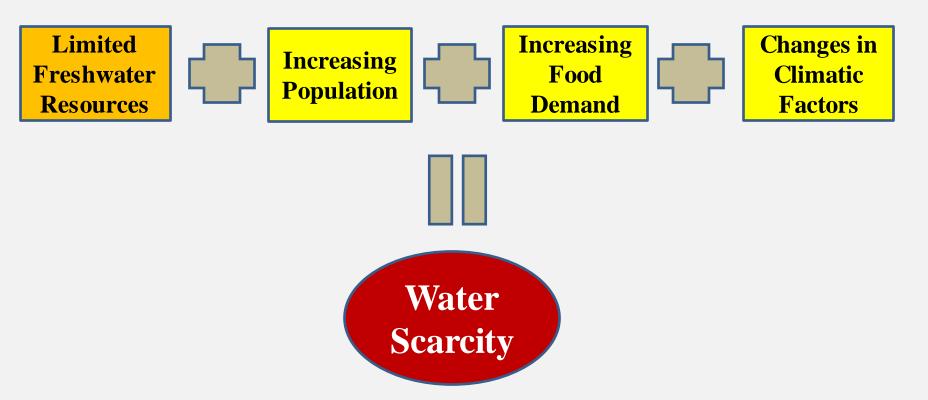

Water Sustainability using the Pond-In-Pond Treatment System with Reuse Kushal Adhikari, Ph.D. 4/7/2022

Should We Even Care?

- Earths total water vol. ~ 1.4 billion km³
- Current global water demand ~ 4600 km³ per year
- Projected global water demand ~ 6000 km³ per year by 2050
- Simple math tells even if we use only 5%, we have at least next 20,000 years of water supply


Our Water Resources

The total usable freshwater supply for ecosystems and humans is -

 Less than 1% of all freshwater resources, and only 0.01% of all the water on earth

Water Resources: Global Concerns

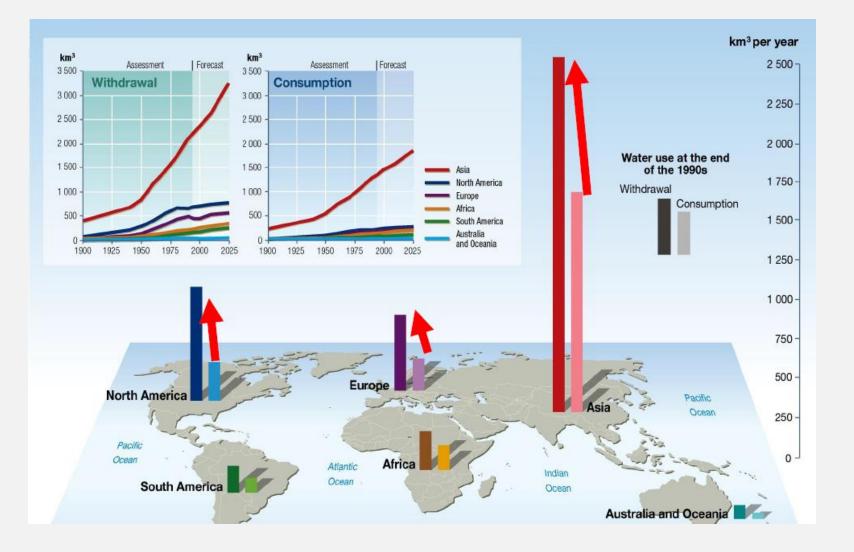
 By 2025, 1.8 billion people will be living in countries or regions with absolute water scarcity (<500 m³/capita/year), and two-thirds of the world's population could be living under water stressed (<1700 m³/capita/year) conditions

Per Capita Water Supply

	Year				% Reduction		
Country	1991	2001	2011	2017	since 1991		
Canada	103,451	93,713	84,483	77,985	25%		
United States	11,997	10,748	9,802	8,668	28%		
Iraq	5,028	3,660	2,751	937	81%		
Japan	3,504	3,416	3,399	3,392	3%		
Ethiopia	2,004	1,733	1,323	1,147	43%		
Israel	383	290	235	86	77%		
Jordan	260	191	148	70	73%		

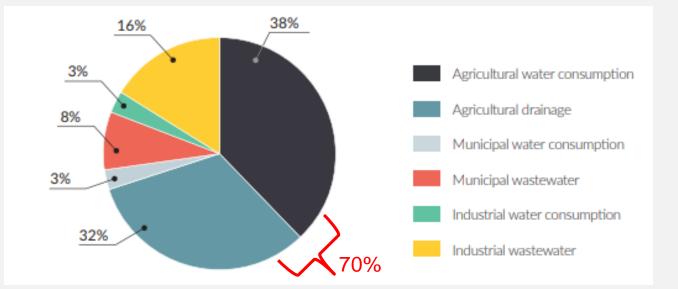
Source: FAO, AQUASTAT Data, 2022

Wastewater Reuse in Agriculture



Global Freshwater Withdrawal

- Agricultural sector is by far the biggest user of freshwater, (70%)
- Second largest consumer sector is Industry (19%)
- Municipal withdrawals is 11%


Withdrawal vs. Consumption

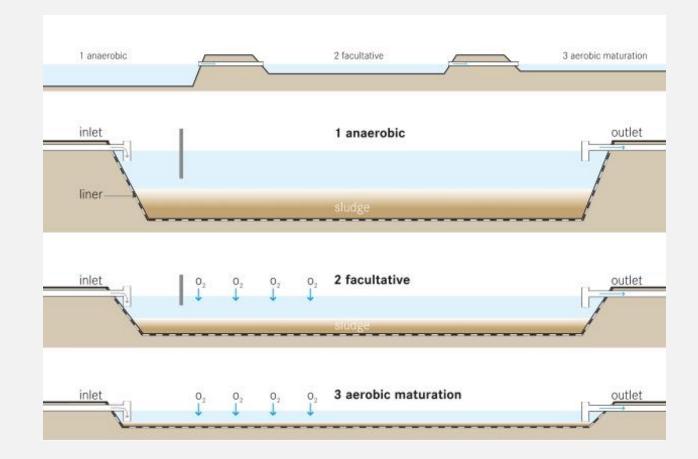
Not all quantity of water withdrawal is consumed

Wastewater

- Represents 56% of global freshwater withdrawals
- Only 6% in the US and less than 3% globally is reclaimed for beneficial use
 - In US, approximately 10 million hectares could be irrigated, representing about half of the irrigated crop area
- Increased recycle rate to 15%, freshwater could last until 2125 instead of 2030

Research Objective

Develop a simple, low-cost adaptable wastewater treatment system that can be used for wastewater reuse in irrigation


Wastewater Reuse in Agriculture

- Reduce stress on freshwater resources
- Less stringent effluent quality standards thus low cost
- Public acceptance
- Readily available and produced at a proximity of demands for crop production
- Nutrient-rich water supply
 - Reduced need for commercial fertilizers

Wastewater Treatment

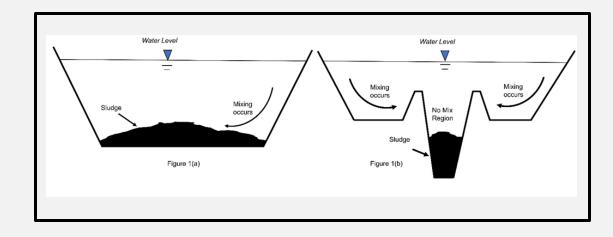
- Plethora of systems available for treating wastewater
- Ponding Systems simple, low cost, low energy treatment system
- Pond types Anaerobic, Facultative, and Aerobic
- Different design approaches

Experiences with Pond Design

- Large land area requirements
- No agreement on the pond configuration required for optimal performance

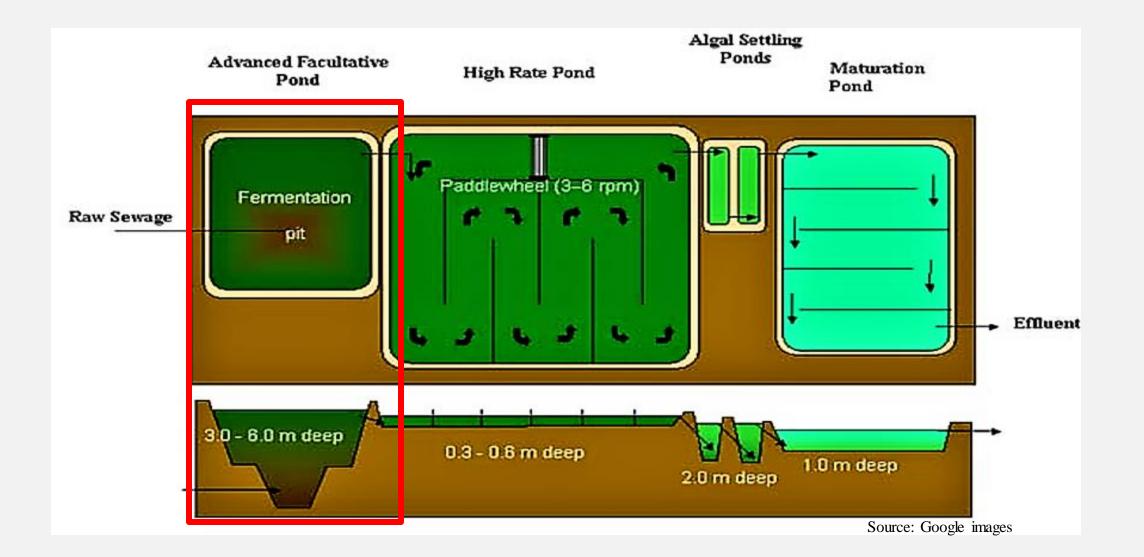
Loading vs. performance

Pond dimensions (depth, retention time) vs. performance


Pond configuration (L:W ratio, baffles, I/O locations) vs. performance

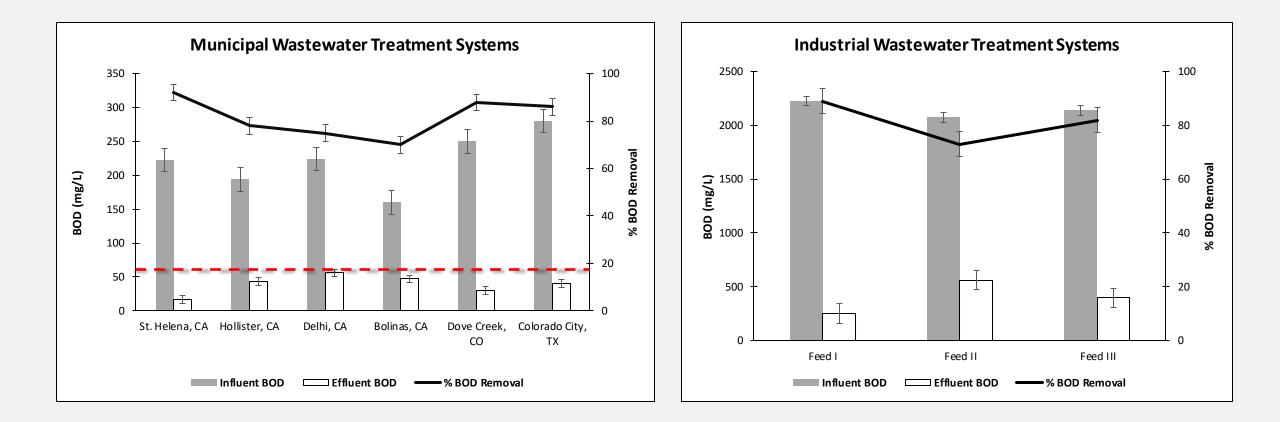
- Huge variation in area requirements
- Pond-In-Pond as an alternative system for wastewater reuse

Method	Hydraulic Retention Time, days	Depth, m	Volume, m ³	Surface area, m ²
Wehner- Wilhelm	53.9	2.45	204012	83,270
Surface Area	145.7	2.45	551547	225,124
Complete mix	61.2	2.45	231533	94,503
Gloyna	67.5	2.45	255334	104,218
Plug flow	98.7	2.45	373646	152,508


Pond-In-Pond An alternative system for wastewater reuse

- Integrates the best functions of anaerobic and aerobic pond units
- Aerobic near the surface
 - Photosynthetic oxygenation thus removing odors
- Anaerobic at the bottom
 - Complete degradation of organic matter

Example Case Study: AIWPS

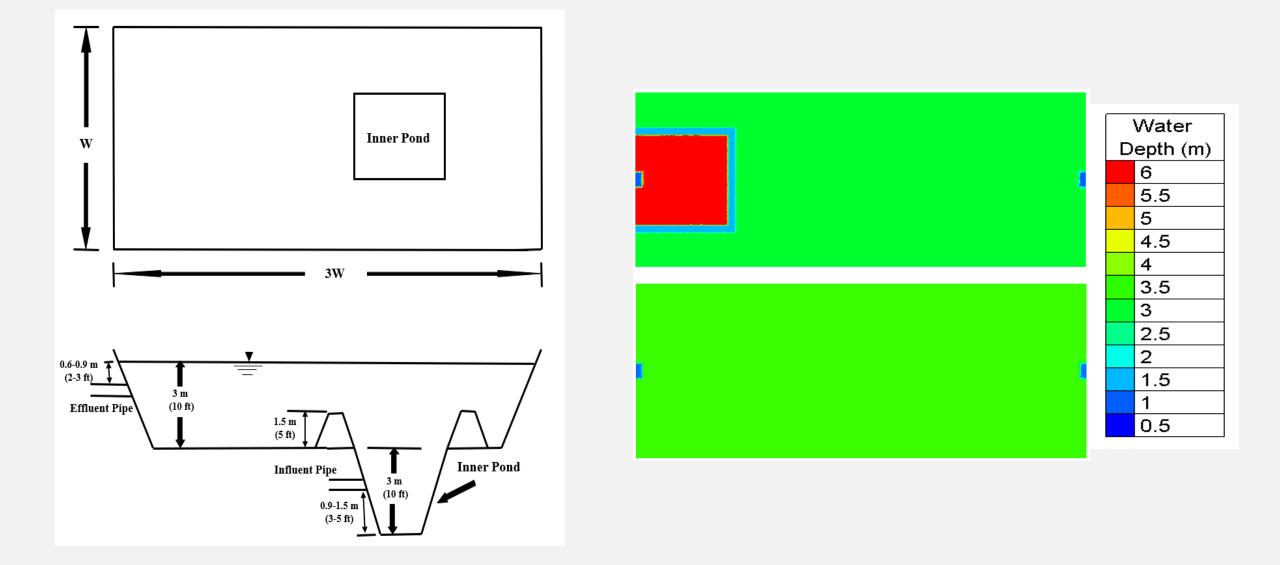

Advanced Integrated Wastewater Pond Systems

AIWPS Pond Performance

System	Influent BOD (mgL ⁻¹)	Pond-In-Pond (PIP)			Advanced Integrated Wastewater Ponding System (AIWPS)		
		Retention time (days)	Effluent BOD (mgL ⁻¹)	% Removal	Effluent BOD (mgL ⁻¹)	% Removal	
St. Helena, CA*	223	20	17	92	7	97	
Hollister, CA^*	194	32	43	78	7	96	
Delhi, CA*	224	-	56	75	4	98	
Bolinas, CA^{\dagger}	160	-	47	70	14	91	

Pond Performance Summary

Pond Systems and Land Area Requirements


Waste Characteristics

Design Flow Rate (Q):	3786 m³/d (1 mgd)		
Influent BOD₅ (C₀):	200 mg/L		
Desired effluent BOD₅ (C _e):	30 mg/L		
Avg. summer temperature:	25 C		
Avg. winter temperature:	5 C		
Avg. annual temperature:	10 C		
Avg. annual rainfall:	45.7 cm (18 in)		
Avg. annual evaporation:	228.6 cm (90 in)		
Waste generation:	100 gpd/capita		
Population @ 100 gpd/capita:	10000		
NOTE: side slope for all cases will be 2.5:1			

Summary – Municipal W/W only

Aerobic:	13.6 ha	
Facultative (W-W):	7.2 ha	
Facultative (Gloyna):	8.5 ha	
Anaerobic (Areal):	8.8 ha	
Pond-In-Pond:	3 ha	
	i	

2-D Modelling of PIP

Flow Dynamics using 2-D Modelling

Velocity (m/s)

2 to 2.25

1.75 to 2 1.5 to 1.75

1.25 to 1.5

1 to 1.25

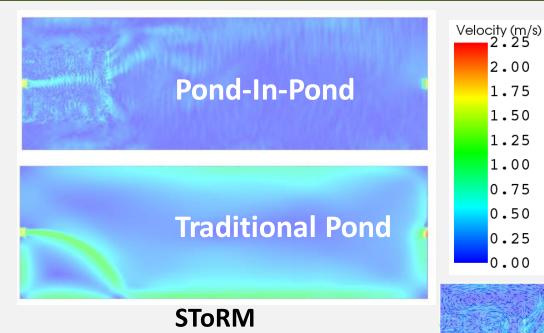
0.75 to 1

0.5 to 0.75

0.25 to 0.5 Below 0.25

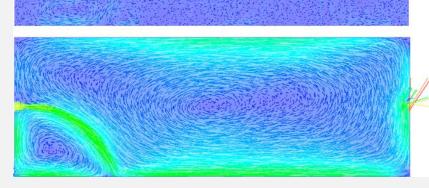
TELEMAC-2D

Traditional Pond

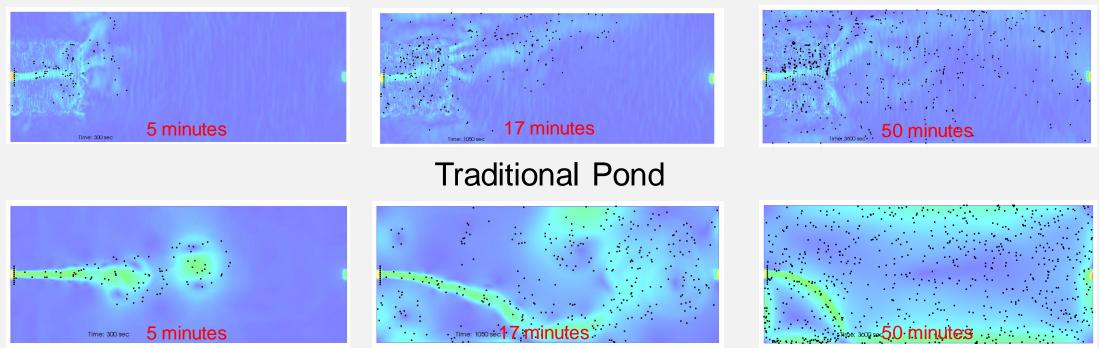

Incoming higher velocity

rotational movements

propagates through the pond


Channelized flow along with

Above 2.25


Pond-In-Pond

- Incoming higher velocity dissipates within the inner basin
- More uniformly distributed flow

Particles Distribution & Retention

Pond-In-Pond

- More particles tend to settle down in the PIP
- More particles tend to remain in suspension with reduced chances for particle settling
- Higher solids retention in PIP (~17% more)

Simple, low cost and easy to operate

- 40-60% reduction in area requirements
- Minimum or no maintenance required
- Can operate for 20+ years without sludge removal

Combines best functions of both aerobic and anaerobic units

- Reduced velocity and higher retention of solids in the PIP; thus, higher treatment levels compared to traditional ponds
- Produce effluent within reuse standards

Best suited for rural and small communities

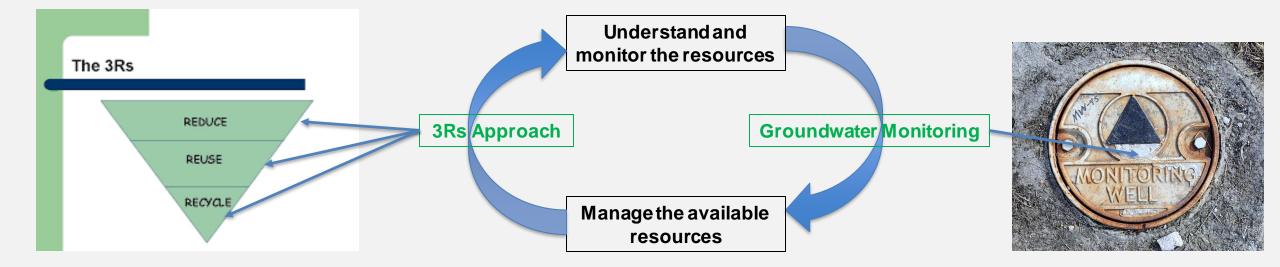
- Nearly 85% of wastewater treatment systems serve the population < 10,000
- Can be operated as decentralized units; avoids conveyance costs

Future Research Prospects on PIP

Integrate CFD model with biokinetics model

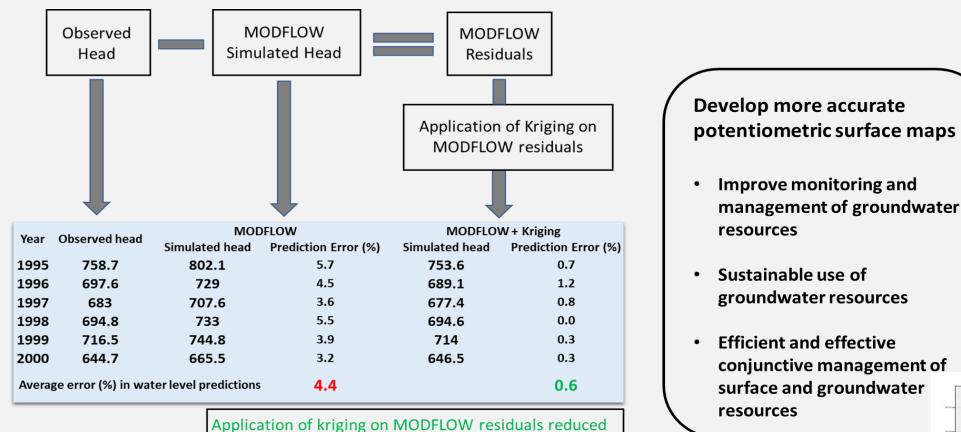
- In-depth understanding of pond hydrodynamics and biological processes within the pond
- Understand Solids Retention Time (SRT) in inner ponds
 - Determine service life of PIP
 - Use of PIP for handling high strength waste

Integrate CFD model with an optimization model


- Design optimization
- Decision support tool to test strategies for multi-objective optimization of PIP systems

Pilot study

Data collection for other water quality parameters


Address the major societal concern of water scarcity with low-cost and effective wastewater treatment

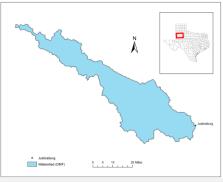
How can we increase the life of water?

Groundwater Monitoring

values after kriging

the water level prediction error by approximately 90%

Predicted values were within 1% off from the observed


Climate-Smart-Agriculture

TARGET

- Maximize yield (Cotton)
- **Optimize available water resources**

SOLUTION

- **Climate Smart Agriculture**
 - Sustainable adaptation strategy

OBJECTIVES

- Develop a Watershed Model for the Double ٠ Mountain Fork (DMF) watershed.
 - Soil Water Assessment Tool (SWAT) adopted here
- Assess the impacts of future climate change ٠ on crop productivity.
 - Cotton response to future climate and adaptability study of dryland cotton production.

Dryland Cotton Production

Over 50% of water requirement is supplied through precipitation.

Earlier shift in planting dates

- Heat units (Temperature projection)
- **Increased precipitation (April September)**
- From Mid-May to Mid/End-April

References

- <u>Adhikari, K</u>. & Fedler, C. B. (2020), Pond-In-Pond: An alternative system for wastewater treatment for reuse. *Journal of Environmental Chemical Engineering*, 8(2), 103523.
- <u>Adhikari, K.</u> & Fedler, C. B. (2020), Water Sustainability using Pond-In-Pond Wastewater Treatment System: Case Studies, *Journal of Water Process Engineering*, 36, 101281.
- <u>Adhikari, K.</u> Fedler, C. B. & Asadi, A. (2021), 2-D modeling to understand the design configuration and flow dynamics of Pond-In-Pond (PIP) wastewater treatment system for reuse, *Process Safety and Environ-mental Protection*, 153, 205-214.
- <u>Adhikari, K.</u> & Uddameri V. (2018, Aug), Modeling Sustainable Adaptation Strategies towards a Climate-Smart-Agriculture in the Southern High Plains of Texas, USA. Paper presented at the *International ARID-LANDS Conference*, Lubbock, TX.
- Asadi, A. & <u>Adhikari, K.</u> (2022), Minimizing errors in the prediction of water levels using kriging technique in residuals of the groundwater model, *Water*, 14, 426

CONNECT, COLLABORATE & CONTRIBUTE

THANK YOU

Promote resilient engineering technology and environmental sustainability through multidisciplinary collaboration and integration of research and educational activities.

Email: <u>kushal.adhikari@humboldt.edu</u>

Website: https://www.adhikarikushal.com/

Google Scholar: https://scholar.google.com/citations?hl=en